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EIGENVALUES OF FROBENIUS ENDOMORPHISMS OF

ABELIAN VARIETIES OF LOW DIMENSION

YURI G. ZARHIN

Abstract. In this paper we discuss nontrivial multiplicative relations among
eigenvalues of Frobenius endomorphisms of abelian varieties over finite fields.
(The trivial relations are provided by the “Riemann Hypothesis” that was
proven by A. Weil.) We classify all abelian varieties over finite fields of dimen-
sion ≤ 3 that admit the nontrivial relations.

1. Introduction

There is a lasting interest in the study of multiplicative relations between eigen-
values of the Frobenius endomorphism FrX of an abelian varietiy X over a finite
field k = Fq of characteristic p (where q is a power of p). A nontrivial multiplicative
relation between the eigenvalues gives rise to an exotic Tate class on a certain self-
product of X [26, 6, 27]. (Here exotic means that this class cannot be presented as
a linear combination of products of divisor classes.) These relations are important
in the study of ℓ-adic representations attached to abelian varieties over global fields
[24, 25]. In particular, they play a crucial role in Serre’s theory of Frobenius tori

[20]. On the other hand, the absence of nontrivial multiplicative relations between
the eigenvalues of most jacobians over finite fields is viewed as an analogue of con-
jectures of Q-linear independence of ordinates of zeros of L-functions over number
fields [3]. The absence of these relations for the jacobian of a given curve C over Fq

was used in [1] in order to study an asymptotic behavior of the normalized error

term in Weil’s formula for the number of points of C in degree n extensions Fqn of
the ground field.

In this paper we study the nontrivial multiplicative relations for abelian varieties
of small dimension. Our main tool, as in [24, 25, 26, 6, 27], is the multiplicative
group Γ(X, k) generated by the set RX of eigenvalues of FrX . Recall that α 7→ q/α
is a permutation of RX and notice that

q−1
( q

α

)2

=
(

q−1α2
)−1

.

This implies that if e : RX → Z is an integer-valued function such that

e(α) = e(q/α) ∀α ∈ RX

then
∏

α∈RX

(

q−1α2
)e(α)

= 1.

Assuming that k is sufficiently large with respect to X , i.e., Γ(X, k) does not

contain nontrivial roots of unity, we say that X is neat (see [27, Sect. 3] and Sect.
2 below) if it enjoys the following property.

This work was partially supported by the Simons Foundation (grant #246625 to Yuri Zarkhin).
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If e : RX → Z is an integer-valued function such that
∏

α∈RX

(

q−1α2
)e(α)

= 1

then e(α) = e(q/α) for all α ∈ RX .
Notice that X is neat if and only if every Tate class on each self-product of X can

be presented as a linear combination of products of divisor classes [26, 6, 27]. (In
particular, the Tate conjecture holds true for all self-products of X .) An analogy
with the Hodge conjecture for complex abelian varieties [7] suggests that up to
dimension 3 all abelian varieties over finite fields should be neat. However, it turns
out that there are non-neat abelian threefolds (see below).

Our main result is the following statement.

Theorem 1.1. Suppose that 1 ≤ dim(X) ≤ 3 and k is sufficiently large with respect
to X. Then X is not neat if and only if it enjoys all of the following three properties.

(i) X is abslolutely simple, all endomorphisms of X are defined over k and its

endomorphism algebra End0(X) is a sextic CM-field that is generated by
FrX .

(ii) End0(X) contains an imaginary quadratic subfield B that enjoys the fol-
lowing property. If

Norm : End0(X) → B

is the norm map corresponding to the cubic field extension End0(X)/B then

Norm
(

q−1Fr2X
)

= 1.

(iii) X is almost ordinary, i.e. the set of slopes of its Newton polygon is {0, 1/2, 1}
and length(1/2) = 2.

Remarks 1.2. Let X and B satisfy the conditions (i)-(iii) of Theorem 1.1. Let
us fix an embedding B ⊂ C of the imaginary quadratic field B into the field C of
complex numbers.

• Let

σ1, σ2, σ3 : End0(X) →֒ C

be the distinct embeddings of sextic End0(X) to C that act as the identity
map on B. Let us put

α1 = σ1(FrX), α2 = σ2(FrX), α3 = σ3(FrX).

Then α1, α2, α3 are distinct eigenvalues of FrX , the set RX consists of six
distinct elements

{α1, α2, α3; q/α1, q/α2, q/α3}
and

1 = Norm(q−1Fr2X) =
3
∏

i=1

q−1α2
i .

In particular,

q3 = (α1α2α3)2.

Notice that the set Φ = {σ1, σ2, σ3} is a CM-type of the sextic CM-field

End0(X), which is not primitive. (See [11, p. 406] for a concise definition
of a primitive CM-type.)
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• Since X is absolutely simple, End0(X) is a field and X is not ordinary, it

follows from [2, Th. 3.6.ii)] that p does not split completely in End0(X),
i.e., the tensor product End0(X) ⊗Q Qp is not isomorphic to a direct sum
of six copies of Qp.

• Since End0(X) is a sextic CM-field, it is a totally imaginary quadratic
extension of a certain totally real cubic field K. Clearly, B and K are
linearly disjoint over K and the natural field homomorphism

B ⊗K → End0(X), x⊗ y 7→ xy

is a field isomorphism. The cubic extension K/Q is not Galois. Indeed,
otherwise it is abelian (even cyclic), the field extension End0(X)/Q is
also a Galois extension and its Galois group coincides with the product
Gal(B/Q) × Gal(K/Q). In particular, Gal(End0(X)/Q) is abelian. By [2,
Th. 3.6.iii], p splits completely in End0(X), which is not the case.

• For each prime ℓ 6= p there exists an exotic six-dimensional ℓ-adic Tate class
on X ×X [27, Sect. 3].

Remark 1.3. See [27, Sect. 4] for examples of non-neat abelian threefolds con-
structed by Hendrik Lenstra,Jr. See also Section 7 below.

Notice that the property to be ordinary is an open condition in the moduli
space of (polarized) abelian varieties of given dimension in characteristic p. Thus
Theorem 1.1 implies that a typical abelian threefold is neat. On the other hand,
one may construct non-neat ordinary abelian fourfolds, using results of [10]; see
also Sect. 8.

The paper is organized as follows. In Section 2 we express the neatness property
of X in terms of the minimal polynomial PX,min(t) of FrX . In Section 3 we review
results of [27]. In Section 4 we discuss Newton polygons of abelian varieties over
finite fields. Section 5 contains a non-existence result for a certain class of simple
abelian surfaces. Section 6 contains the proof of Theorem 1.1. Section 7 deals with
examples. In Section 8 we discuss certain abelian fourfolds over finite fields.

Acknowledgements. I am grateful to Hendrik Lenstra,Jr, Frans Oort and Alice
Silverberg for helpful discussions, and to Igor Shparlinski for stimulating questions.
My special thanks go to Tatiana Bandman, whose comments helped to improve the
exposition.

This work was started during my stay at the Max-Planck-Institut für Mathe-
matik (Bonn) in September 2013. Most of this work was done during the academic
year 2013/2014 when I was Erna and Jakob Michael Visiting Professor in the De-
partment of Mathematics at the Weizmann Institute of Science. The hospitality
and support of both Institutes are gratefully acknowledged.

2. Ranks of neat abelian varieties

As usual, ℓ is a prime different from p and N,Z,Zℓ,Q,C,Qℓ,Qp stand for the
set of positive integers, the rings of integers and ℓ-adic integers, and the fields
of rational, complex, ℓ-adic and p-adic numbers respectively. If z is a complex
number then we write z̄ for its complex-conjugate. Similarly, if φ : E →֒ C is
a field embedding then we write φ̄ for the corresponding complex-conjugate field
embedding

φ̄ : E →֒ C, x 7→ φ(x).
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We write Z(ℓ) for the subring

Z(ℓ) := {a
b
| a ∈ Z, b ∈ Z \ ℓZ} ⊂ Q;

we may also view Z(ℓ) as the subring of Zℓ. (Similarly, the subring Z(p) ⊂ Q is
defined.) If A is a finite set then we write #(A) for number of its elements. We
write rk(∆) for rank of a finitely generated commutative group ∆. Throughout this
paper k is a finite field of characteristic p that consists of q elements, k̄ an algebraic
closure of k and Gal(K) = Gal(k̄/k) the absolute Galois group of k. It is well known
that the profinite group Gal(K) is procyclic and the Frobenius automorphism

σk : k̄ → k̄, x 7→ xq

is a topological generator of Gal(k).
Let X be an abelian variety of positive dimension over k. We write End(X)

for the ring of its k-endomorphisms and End0(X) for the corresponding (finite-
dimensional semisimple) Q-algebra End(X) ⊗ Q. We write FrX = FrX,k for the
Frobenius endomorphism of X . We have

FrX ∈ End(X) ⊂ End0(X).

By a theorem of Tate [21, Sect. 3, Th. 2 on p, 140], the Q-subalgebra Q[FrX ] of
End0(X) generated by FrX coincides with the center of End0(X). In particular, if

End0(X) is a field then End0(X) = Q[FrX ].
If ℓ is a prime different from p then we write Tℓ(X) for the Zℓ-Tate module of

X and Vℓ(X) for the corresponding Qℓ-vector space

Vℓ(X) = Tℓ(X) ⊗Zℓ
Qℓ.

It is well known [9, Sect. 18] that Tℓ(X) is a free Zℓ-module of rank 2dim(X) that
may be viewed as a Zℓ-lattice in the Qℓ-vector space Vℓ(X) of dimension 2dim(X).

By functoriality, End(X) and FrX acts on (Tℓ(X) and) Vℓ(X); it is well known
that the action of FrX coincides with the action of σk. By a theorem of A. Weil
[9, Sect. 19 and Sect. 21], FrX acts on Vℓ(X) as a semisimple linear operator, its
characteristic polynomial

PX(t) = PX,k(t) = det(tId − FrX , Vℓ(X)) ∈ Zℓ[t]

lies in Z[t] and does not depend on a choice of ℓ. In addition, all eigenvalues of FrX
(which are algebraic integers) have archimedean absolute value equal to q1/2. This
means that if

L = LX ⊂ C

is the splitting field of PX(t) and

RX = RX,k ⊂ L

is the set of roots of P (t) then L is a finite Galois extension of Q such that for every
field embedding L →֒ C we have | α |= q1/2 for all α ∈ RX . Let Gal(L/Q) be the
Galois group of L/Q. Clearly, RX is a Gal(L/Q)-invariant (finite) subset of L∗. It
follows easily that if α ∈ RX then q/α ∈ RX . Indeed, q/α is the complex-conjugate

ᾱ of α. We have

q−1α2 =
α

q/α
.
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Remark 2.1. Let m(α) be the multiplicity of the root α of PX(t). Then

PX(t) =
∏

α∈RX

(t− α)m(α) ∈ C[t] (1)

and
rk(End(X)) =

∑

α∈RX

m(α)2 (2)

(see [21, pp. 138–139], especially (4) and (5)). Let κ be a finite overfield of k of
degree d and X ′ = X ×k κ. Then Tℓ(Xκ) and Vℓ(Xκ) are canonically isomorphic
to Tℓ(X) and Vℓ(X) respectively,

FrXκ
= FrdX ⊂ End(X) ⊂ End(Xκ),

RXκ
= {αd | α ∈ RX}, PXκ

(t) =
∏

α∈RX

(t− αd)m(α).

Suppose that α/β is not a root of unity for every pair of distinct α, β ∈ RX .
This implies that αd and βd are distinct roots of PXκ

(t). It follows that for every
α ∈ RX the positive integer m(α) coincides with the multiplicity of root αd of the
polynomial PXκ

(t). The formulas (1) and (2) applied to Xκ give us the equality
rk(End(Xκ)) = rk(End(X)), which implies that End(Xκ) = End(X), because the
quotient End(Xκ)/End(X) is torsion-free [19, Sect. 4, p. 501]. In particular, if X
is simple then it is absolutely simple.

Remark 2.2. Let OL be the ring of integers in L. Clearly, RX ⊂ OL. It is also
clear that if B is a maximal ideal in OL such that char(OL/B) 6= p then all elements
of RX are B-adic units.

Remark 2.3. Notice that RX is a Gal(L/Q)-orbit if and only if PX(t) is a power
of an irreducible polynomial (over Q), which means that X is isogenous over k to
a simple abelian variety over k [21, Theorem 2(e)] (see also [14, Sect. 5, Th. 5.3
and Remark after it]).

By functoriality, End0(X) and Q[FrX ] act on Vℓ(X). This action extends by
Qℓ-linearity to the embedding of Qℓ-algebras

Q[FrX ] ⊗Q Qℓ ⊂ End0(X) ⊗Q Qℓ = End(X) ⊗Q Qℓ ⊂ EndQℓ
(Vℓ(X)).

Example 2.4. Let us assume that

E = Q[FrX ]

is a field. Then it is known [16, Th. 2.1.1 on p. 768] that Vℓ(X) carries the natural
structure of a free E⊗QQℓ-module and this module is free of rank e = 2dim(X)/[E :
Q]. It follows that

PX(t) = [PX,min(t)]e, 2dim(X) = deg(PX) = e deg(PX,min)

where PX,min(t) is the minimal polynomial of the semisimple linear operator FrX :
Vℓ(X) → Vℓ(X). Clearly, PX,min(t) has integer coefficients, PX,min(FrX) = 0 ∈
End(X) and the natural homomorphism

Q[t]/PX,min(t)Q[t] → Q[FrX ], t 7→ FrX + PX,min(t)Q[t]

is a field isomorphism. In particular, PX,min(t) is irreducible over Q.
This implies that if we fix an embedding E ⊂ C then LX is the normal closure

of E over Q and RX is the set of images of FrX in C with respect to all field
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embeddings E →֒ C; in addition, every eigenvalue α ∈ RX has multiplicity e. Since
FrX generates E (over Q), we conclude that if

φ : E →֒ C, ψ : E →֒ C

are two distinct field embeddings of E into C then

φ(FrX) 6= ψ(FrX).

Now assume additionally that X is simple and dim(X) > 1; if dim(X) = 2 then we
also assume that X is absolutely simple. Then it is known ([22, Sect. 1, Exemples])
that E is a CM-field. In particular, it has even degree say, 2d = deg(PX,min) and
for each field embedding φ : E →֒ C its complex-conjugate φ̄ : E →֒ $ does not

coincide with φ. Now let Φ be a CM-type of E, i.e., a set {φ1, . . . φd} of d distinct
field embeddings E →֒ C such that φj 6= φj for all i, j. Now if Φ̄ = {φ̄ | φ ∈ Φ}
then Φ

⋂

Φ̄ = ∅ and

Φ ∪ Φ̄ = {φ1, . . . , φd; φ1, . . . , φd}
coincides with the 2d-element set of all field embeddings E →֒ C. It follows that
if we put αi = φi(FrX) for all i with 1 ≤ i ≤ d then RX consists of 2d distinct
elements

{α1, . . . , αd; α1 =
q

α1
, . . . , αd =

q

αd
}.

Notice also that

2dim(X) = deg(PX) = e · deg(PX,min) = e · 2d.

We write

Γ = Γ(X, k)

for the multiplicative subgroup of L∗ generated by RX . Using Weil’s results men-
tioned above, one may easily check that ΓX contains q and is a finitely generated
group of rank rk(Γ) ≤ dim(X) + 1. Notice that the rank of Γ is dim(X) + 1 if and
only if Γ is a free commutative group of rank dim(X) + 1 [26].

Remark 2.5. It follows from Remark 2.2 that if B is a maximal ideal in OL such
that char(OL/B) 6= p then all elements of Γ(X.k) are B-adic units.

We write

Γ′ = Γ′(X, k)

for the multiplicative subgroup of L∗ generated by all the eigenvalues of q−1Fr2X .
In other words, Γ′ is the multiplicative (sub)group generated by

R′

X = {q−1α2 | α ∈ RX}.
Clearly, all the archimedean absolute values of all elements of Γ′ are equal to 1.

One may easily check that

rk(Γ′) + 1 = rk(Γ)

and Γ′ and q generate a subgroup of finite index in Γ. We define the rank of X as
rk(Γ′) and denote it by rk(X). Clearly,

0 ≤ rk(X) ≤ dim(X).

It is known [27, Sect. 2.9 on p. 277 and Remark 2.9.2 on p. 278] that if Y is an
abelian variety over k then

max(rk(X), rk(Y )) ≤ rk(X × Y ) ≤ rk(X) + rk(Y ).
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Notice also that rk(X) does not depend on a field of definition of X and would not
change if we replace X by an isogenous abelian variety. In addition, rk(X) = 0 if
and only if X is a supersingular abelian variety ([27, Sect. 2.0]).

This implies the following trivial multiplicative relation between eigenvalues
α, β, q/α, q/β ∈ RX .

α · q
α

= q = β · q
β
. (3)

Let us put

R′

X := {q−1α2 | α ∈ RX}.
Clearly, all elements of R′

X have archimedean absolute value 1 with respect to all
field embeddings L →֒ C and the map β 7→ β−1 is an involution of R′

X .
Assume that k is sufficiently large with respect to X , i.e., the multiplicative

group Γ(X, k) generated by k does not contain roots of unity (except 1). This
implies (thanks to Remark 2.1) that all the endomorphisms of X are defined over
k. On the other hand, the map

RX → R′

X , α 7→ α′ = q−1α2

is a bijective map that sends q/α to 1/α′.
Suppose that there are an integer-valued function e : RX → Z and an integer M

such that
∏

α∈RX

αe(α) = qM . (4)

Since the archimedean absolute value of each α is
√
q, we have

1

2

(

∑

α∈RX

e(α)

)

= M

and therefore

2M =
∑

α∈RX

e(α),
∏

α∈RX

α2e(α) = q2M .

This implies that
∏

α∈RX

(q−1α2)e(α) = 1. (5)

We may rewrite (5) as
∏

β∈R′

X

βe′(β) = 1 (5bis)

where e′(α2/q) := e(α).
Conversely, if (5bis) holds for some e′ : R′

X → Z then we have
∏

α∈RX

αe(α) = qM

with e(α) := 2e′(α2/q) and M :=
∑

β∈R′

X
e′(β). We say that X is neat if it enjoys

one of the following obviously equivalent conditions (we continue to assume that k
is sufficiently large).

(i) Suppose an integer-valued function e : RX → Z and a positive integer M
satisfy (3). Then e(α) = e(q/α) ∀α ∈ RX .

(ii) Suppose an integer-valued function e′ : R′

X → Z satisfies (5bis). Then
e′(β) = e′(1/β) ∀β ∈ R′

X .
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Remark 2.6. Let us consider the (sub)set RX,ss of α ∈ RX such that q−1α2 is a
root of unity. (Here the subscript ss is short for supersingular.) Clearly, α ∈ RX,ss

if and only if qα−1 ∈ RX,ss. It is also clear that if RX,ss is non-empty then 1/2 is
a slope of the Newton polygon of X (see Sect. 4 below). The converse is not true
if dim(X) > 1.

Recall [27, Definition 2.3 on p. 276] that k is sufficiently large with respect to
X or just sufficiently large if Γ(X, k) does not contain roots of unity different from
1. If m the order of the subgroup of roots of unity in Γ(X, k) and κ/k is a finite
algebraic field extension then κ is sufficiently large for X if and only if the degree
[κ : k] is divisible by m [27, p. 276]. In particular, if k is sufficiently large and
β ∈ R′

X is a root of unity then β = 1. Notice also that if rk(X) = dim(X) then
Γ(X, k) is a free commutative group [26, Sect. 2.1], i.e., k is sufficiently large.

Lemma 2.7. Suppose that k is sufficiently large with respect to X. If RX,ss is
non-empty then the following conditions hold:

(i) q is a square.
(ii) RX,ss is either the singleton {√q} or the singleton {−√

q}. In both cases
R′

X contains

q−1(±√
q)2 = 1.

Proof. Let α ∈ RX,ss. Since the root of unity q−1α2 lies in Γ(X, k), we conclude
that α2 = q. Since RX is Gal(L/Q)-stable, we conclude that if q is not a square
then both

√
q and −√

q lie in RX and therefore

−1 =
−√

q
√
q

∈ Γ(X, k),

which is not the case, because k is sufficiently large. Therefore q is a square and
RX is either the singleton {√q} or the singleton {−√

q}. �

Remark 2.8. Suppose that k is sufficiently large. Then if α1 and α2 are distinct

elements of RX then
α1

α2
6= ±1

and therefore q−1α2
1 and q−1α2

2 are distinct elements of R′

X . This implies that

#(RX) = #(R′

X).

Till the end of this Section we assume that k is sufficiently large with respect to
X .

In order to compute the rank of neat abelian varieties, let us consider the minimal
polynomial PX,min(t) of the semisimple linear operator FrX : Vℓ(X) → Vℓ(X). The
set of roots of PX,min(t) coincides with one of PX(t), i.e., with RX ; in addition, all
the roots of PX(t) are simple. It follows from Remark 2.3 that if X is simple or
k-isogenous to a k-simple abelian variety then PX,min(t) is irreducible over Q and
PX(t) = [PX,min(t)]d for a certain positive integer d. In general case the minimal
polynomial

PX,min(t) =
∏

α∈RX

(t− α)

and its degree deg(PX,min) coincides with #(RX).
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Example 2.9. Suppose X a supersingular abelian variety. According to Subsection
4.3, α2/q is a root of unity for all α ∈ RX , i.e., RX = RX,ss. It follows from Lemma
2.7 that q is a square and RX is either the singleton {−√

q} or the singleton {√q}.
Then PX,min(t) is a linear polynomial that equals t − √

q or t +
√
q respectively.

This implies that that PX(t) = (t±√
q)2dim(X) and R′

X is always the singleton {1}.
It follows that X is neat.

Example 2.10. Suppose RX,ss is empty. This implies that α 6= q/α for every
α ∈ RX , the set RX consists of even, say, 2d elements. Then one may choose d
distinct elements α1, . . . , αd of RX such that

RX = {α1, . . . , αd; q/α1, . . . , q/αd}.
If we put βi = q−1α2

i then R′

X also consists of 2d (distinct) elements and coincides
with

{β1, . . . , βd; β−1
1 , . . . , β−1

d }.
In particular, rk(X) ≤ d. Now X is neat if and only if the set {β1, . . . , βd} is
multiplicatively independent, which means that

rk(X) = d.

If this is the case then

rk(X) = d =
#(RX)

2
=

deg(PX,min)

2
.

Example 2.11. Suppose RX,ss is non-empty but does not coincide with the whole
RX . Let us denote by α0 the only element of RX,ss; as we have seen above, q
is a square and α0 = ±√

q. This implies that if α is an element of RX that is
different from α0 then α 6= q/α, the set RX \ {α0} consists of even number of, say,
2d elements. Then one may choose d distinct elements α1, . . . , αd of RX \{α0} such
that

RX = {α0; α1, . . . , αd; q/α1, . . . , q/αd}.
If we put βi = q−1α2

i then β0 = 1 and R′

X consists of (2d+ 1) distinct elements

{1;β1, . . . , βd; β−1
1 , . . . , β−1

d }.
In particular, rk(X) ≤ d. Now X is neat if and only if the set {β1, . . . , βd} is
multiplicatively independent, which means that

rk(X) = d.

If this is the case then

rk(X) = d =
#(RX) − 1

2
=

deg(PX,min) − 1

2
.

Example 2.12. Suppose that X is simple and rk(X) = 1. It follows from Lemma
2.10 of [27] that R′

X consists of two elements, say, β and β−1. Clearly, β is not a
root of unity. This implies easily that X is neat.

We will need the following elementary lemma.

Lemma 2.13. Let p be a prime, B an imaginary quadratic field, T the set of
maximal ideals in B that lie above p. Let UT ⊂ B∗ be the multiplicative subgroup
of T -units in B and U1

T the subgroup of TB that consists of all γ ∈ UT such that
the archimedian absolute value of γ is 1. If U1

T is infinite then p splits in B (i.e.,
#(T ) = 2), rk(UT ) = 2 and rk(U1

T ) = 1.
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Proof. By the generalized Dirichlet’s unit theorem [4, Ch. V, Sect. 1], UT is
a finitely generated commutative group of rank #(T ). Clearly, UT contains the
element p of infinite order. If #(T ) = 1 then rk(UT ) = 1 and therefore for each

γ ∈ U1
T ⊂ UT

a certain positive power of γ is a power of p. However, the archimedean absolute
value of γ equals 1 and therefore γ must be a root of unity, which is not the case,
since there are only finitely many roots of unity in B. So, #(T ) = 2, i.e., p splits
in B. In addition, UT has rank 2. Since no power of p (except 1 = p0) lies in
U1
T , we conclude that rk(U1

T ) < rk(UT ) = 2. Since rk(U1
T ) ≥ 1, we conclude that

rk(U1
T ) = 1. �

Corollary 2.14. Let B be an imaginary quadratic subfield in L. Suppose that the
intersection

Γ′(X, k)B := B
⋂

Γ′(X, k)

of B and Γ′(X, k) is infinite. Then p splits in B and the infinite multiplicative
group Γ′(X, k)B has rank 1.

Proof. Notice that (in the notation of Lemma 2.13) Γ′(X, k)B is an infinite subgroup
of U1

T . In particular, U1
T is also infinite. Now Corollary follows readily from Lemma

2.13. �

Theorem 2.15. Suppose X is simple, dim(X) > 1, k is sufficiently large with
respect to X and the degree [E : Q] of the CM-field E = Q[FrX ] is an even number
2d that is strictly greater than 2. Suppose that E contains an imaginary quadratic
field B such that p does not split in B. Then

NormE/B(q−1Fr2X) = 1 ∈ B

and rk(X) < d.

Proof. By Remark 2.1 X is absolutely simple. Let us fix an embedding of B into
C and view B as the subfield of C. Let Φ be the d-element set of field embeddings
φi : E →֒ C that coincide on B with the identity map (1 ≤ i ≤ d). Then Φ is a
CM-type of E and, thanks to Example 2.4 RX consists of 2d distinct elements

{α1, . . . , αd;
q

α1
, . . . ,

q

αd
}

where αi = φi(FrX) (1 ≤ i ≤ d). Clearly, (in the notation of Corollary 2.14)

γ := NormE/B(q−1Fr2X) =

d
∏

i=1

α2
i

q
∈ B

⋂

Γ′(X, k) = Γ′(X, k)B.

By Corollary 2.14 the group Γ′(X, k)B is finite and therefore γ is a root of unity.
Since k is sufficiently large, γ = 1, i.e.

NormE/B(q−1Fr2X) =

d
∏

i=1

α2
i

q
= 1.

This proves the first assertion about the norm. Clearly, Γ′(X, k) is generated by
d elements {q−1α2

i | 1 ≤ d} and their product is 1. This implies that Γ′(X, k) is
actually generated by the first (d − 1) elements {q−1α2

i | 1 ≤ d − 1} and we are
done. �
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3. Ranks of non-simple abelian varieties

The following assertion was proven in [27, pp. 273, 280–281].

Theorem 3.1. Let X and Y be non-supersingular simple abelian varieties over k.
If

rk(X × Y ) = rk(X) + rk(Y ) − 1

then there exists an imaginary quadratic field B enjoying the following properties.

0) p splits in B;
1) The number fields EX = Q[FrX,k] and EY = Q[FrY,k] contain subfields

isomorphic to B;
2) NormEX/B(q−1Fr2X,k) and NormEY /B(q−1Fr2Y,k) are not roots of unity.

Remark 3.2. There is a typo in the displayed formula for ranks in [27, Th. 2.12],
see Sect. 9. It was also erroneously claimed (without a proof) in [27, Th. 2.12] that
the conditions 0,1,2 are equivalent to the formula rk(X × Y ) = rk(X) + rk(Y ) − 1.
Actually, the conditions 0,1,2 imply only the inequality rk(X × Y ) ≤ rk(X) +
rk(Y ) − 1.

Proof of Theorem 3.1. Assertions 1 and 2 are proven in [27, pp. 280–281]. Asser-
tion 0 is proven in [27, Remark 1.1.5 on p. 273]. (It also follows from Assertion 2
combined with Lemma 2.14).

�

Corollary 3.3 (Theorem 2.11 of [27]). Assume that E = End0(X) is a number
field. Let Y be an ordinary elliptic curve over k. The equality rk(Γ(X × Y )) =

rk(Γ(X)) holds true if and only if End0X contains an imaginary quadratic subfield

isomorphic to B = End0Y and NormE/B(q−1Fr2X,k) is not a root of unity.

Proof. Since rk(Y ) = 1, we have

rk(X) = rk(X) + rk(Y ) − 1.

This implies that in one direction (if we are given that rk(Γ(X × Y )) = rk(Γ(X)),
i.e., rk(X × Y ) = rk(X)) then our assertion follows from Theorem 3.1. Conversely,

suppose that B = End0Y is isomorphic to a subfield of E and

γ := NormE/B(q−1Fr2X,k) ∈ B

is not a root of unity. Let us fix an embedding E ⊂ C. We have

γ ∈ B ⊂ E ⊂ LX ⊂ C.

By definition, γ is a product of elements of R′

X and therefore lies in Γ′(X, k). In
particular, in the notation of Lemma 2.14, γ ∈ Γ′(X, k)B. On the other hand,
q−1Fr2Y,k ⊂ B is also not a root of unity; in addition, it generates Γ′(Y, k). No-

tice that (in the notation of Lemma 2.13) both γ and q−1Fr2Y,k lie in U1
T ; in

particular, U1
T is infinite. By Lemma 2.13, U1

T has rank 1 and therefore the

intersection of two cyclic (sub)groups generated by γ and q−1Fr2Y,k respectively
is an infinite cyclic group. This implies that the intersection of finitely gener-
ated groups Γ′(X, k) and Γ′(Y, k) is an infinite group. It follows that the rank of
Γ′(X × Y, k) = Γ′(X, k)Γ′(Y, k) is strictly less than the sum

rk(Γ′(X, k)) + rk(Γ′(Y, k)) = rk(Γ′(X, k)) + 1.



12 YURI G. ZARHIN

In other words, rk(X × Y ) < rk(X) + 1, i.e., rk(X × Y ) ≤ rk(X). It follows that
rk(X × Y ) = rk(X) and we are done. �

4. Newton polygons

In order to define the Newton polygon of X , let us consider the ring OL of
integers in L and pick a maximal ideal P in OL such that the residue field OL/P
has characteristic p. The set Sp of such ideals constitutes a Gal(L/Q)-orbit. Let

ordP : L∗ → Q

be the discrete valuation map that corresponds to P and normalized by the condi-
tion

ordP(q) = 1.

Then the set

SlpX = ordP(RX) ⊂ Q

is called the set of slopes of X . For each c ∈ SlpX we write

length(c) = lengthX(c)

for the number of roots α of PX(t) (with multiplicities) such that

ordP(α) = c.

By definition
∑

c∈SlpX

length(c) = deg(PX) = 2dim(X). (6)

Remark 4.1. It is well known that all slopes c ∈ SlpX are rational numbers
that lie between 0 and 1. In addition, if c is a slope then 1 − c is also a slope
and length(c) = length(1 − c). In addition, if 1/2 is a slope then its length is
even. Notice also that the rational number c can be presented as a fraction, whose
denominator is a positive integer that does not exceed 2dim(X) [25, p. 173].

Since P(t) has rational coefficients and Gal(L/Q) acts transitively on Sp, the set
SlpX and the function

lengthX : Slpp → N

do not depend on a choice of P. The integrality property of the Newton polygon
[14, Sect. 9 and 21] means that c · lengthX(c) is a positive integer for each nonzero
slope c. Suppose that a slope c 6= 1/2 is presented as the fraction in lowest terms,
whose denominator is greater than dim(X). Then length(c) > dim(X) and

length(1 − c) = length(c) > dim(X),

which implies length(c) + length(1 − c) > 2dim(X). This contradicts to (6). So,
each slope c 6= 1/2 can be presented as a fraction, whose denominator does not
exceed dim(X). It is also clear, that if the denominator of c in lowest terms is
exactly dim(X) then

length(c) = dim(X) = length(1 − c)

and SlpX = {c, 1 − c}.

Remark 4.2. Suppose that X is simple. Then as we have seen, PX(t) = PX,min(t)e.
It follows that e divides lengthX(c) for every slope c of the Newton polygon of X .
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Definition 4.3. An abelian variety X is called ordinary if SlpX = {0, 1}; it is
called supersingular if SlpX = {1/2}. It is well known that X is supersingular if
and only if R′

X consists of roots of unity, i.e., q−1α2 is a root of unity for all α ∈ RX .
(By the way, it follows immediately from Proposition 3.1.5 in [25, p. 172].)
X is called of K3 type [26] if SlpX is either {0, 1/2, 1} or {0, 1} while (in both

cases) lengthX(0) = lengthX(1) = 1. It is called almost ordinary [6] if

SlpX = {0, 1/2, 1}, lengthX(1/2) = 2.

Remark 4.4. Clearly, X is supersingular if and only if rk(X) = 0. If X is a simple

abelian variety of K3 type then End0(X) is a field and rk(X) = dim(X) [26]. It is
known ([23, Th. 7.2 on p. 553]) that if X is a simple ordinary abelian variety then

End0(X) is a field and all endomorphisms of X are defined over k. In particular,

X is absolutely simple. If X is a simple almost ordinary then End0(X) is a field
[12]. It is also known that for such X we have rk(X) = dim(X) or dim(X) − 1; if,
in addition, dim(X) is even then rk(X) = dim(X) [6].

Theorem 4.5. Let X be a simple abelian variety of positive dimension over k
and suppose that PX(t) is irreducible. Suppose that there exists a rational number
c 6= 1/2 such that SlpX = {c, 1− c}. (E.g., X is ordinary.) If rk(X) = dim(X)− 1
then dim(X) is even.

Proof. Let us put g = dim(X) and

c′ = 2c− 1 = −[2(1 − c) − 1].

Clearly, c′ 6= 0 and for all α ∈ RX the rational number ordP(α2/q) is either c′ or
−c′ . Let us define m(α) by

ordP(α2/q) = m(α)c′.

Clearly, m(α) = 1 or −1. By Theorem 3.6(b) of [6] there exist α1, . . . , αg ∈ RX

and integers n1, . . . , ng such that every ni is either 1 or −1 and γ =
∏g

i=1(α2
i /q)

ni

is a root of unity. Pick P ∈ Sp. We have

0 = ordP(γ) =

g
∑

i=1

niordP

(

α2
i /q
)

=

g
∑

i=1

nim(αi)c
′ =

[

g
∑

i=1

(±1)

]

c′.

It follows that for a certain choice of signs
∑g

i=1(±1) = 0 and therefore g is even. �

Corollary 4.6. Suppose that X is a simple abelian variety over k. Assume that
1 ≤ dim(X) ≤ 3 and k is sufficiently large with respect to X. If X is not neat then
it is almost ordinary and dim(X) = 3.

Proof. It follows from Remark 2.1 that X is absolutely simple. The equality
dim(X) = 3 follows from Theorem 3.5 in [27]. Since X is not neat, 1 < rk(X) <
dim(X) = 3. This implies that rk(X) = 2 and therefore deg(PX,min) > 2 · 2 = 4.
Since deg(PX,min) divides deg(PX) = 6, we conclude that deg(PX,min) = deg(PX),
i.e., PX(t) = PX,min(t) is irreducible over Q. Since dim(X) = 3 is odd, it follows
from Theorem 4.5 that the Newton polygon of X has, at least, 3 distinct slopes.
In addition, Remark 4.1 implies that all the slopes different from 1/2 can be pre-
sented as fractions, whose denominator is strictly less than dim(X). In other words,
SlpX = {0, 1/2, 1}. In particular, length(1/2) = 2 or 4. If length(1/2) = 4 then
length(0) = length(1) = 1 and X is of K3 type, which is not the case, since the
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rank of a simple abelian variety of K3 type equals its dimension [26]. Therefore
length(1/2) = 2 and length(0) = length(1) = 2, i.e., X is almost ordinary. �

5. Abelian Surfaces

The following statement may be viewed as a rewording of Example (2)(A) in
[18, Sect. 8.4, p. 64]. (See [17, Th. 5], [13] and also [15] where the endomorphism
algebras of abelian varieties and complex tori are discussed in detail.)

Theorem 5.1. Let  L be a quartic CM-field that contains an imaginary quadratic
field B. Let S be a complex abelian surface provided with an embedding  L →֒
End0(S). Then S is isogenous to a square of an elliptic curve with complex multi-
plication. In particular, S is not simple.

Proof. We may view  L as a subfield of C. Then B = Q(
√
−d) where d is a positive

integer. The field  L contains the real quadratic subfield Q(
√
r) where r is a square-

free positive integer. Clearly,

 L = Q⊕Q
√
−d⊕Q

√
r ⊕Q

√
−rd

is a Galois extension of Q. This implies that  L contains a second imaginary qua-
dratic subfield H := Q(

√
−rd). The natural map B ⊗Q H →  L, b ⊗ h 7→ bh is a

field isomorphism. In addition, the natural injective homomorphism

Gal(B/Q) × Gal(H/Q) →֒ Gal( L/Q)

is surjective and therefore is a group isomorphism. Since [ L : Q] = 2 · 2, it admits
22 = 4 CM-types Φ [9, Sect. 22], [5]. Here is the list of all them. We have two CM-
types Gal(B/Q)⊗ τ2 indexed by τ2 ∈ Gal(H/Q) and two CM-types τ1 ⊗Gal(H/Q)
indexed by τ1 ∈ Gal(B/Q). They all have nontrivial automorphism groups

Aut(Φ) := {σ ∈ Gal( L/Q) | σΦ = Φ}.
Namely, Aut(Φ) = Gal(B/Q) for the former two CM-types and Aut(Φ) = Gal(H/Q)
for the latter two. Now the result follows from Theorem 3.5 of [5, p. 13] (applied
to F =  L.) �

Corollary 5.2. There does not exist an abelian surface Y over a finite field k that
enjoys the following properties.

(i) All endomorphisms of Y are defined over k.

(ii) End0(Y ) is a quartic CM-field that contains an imaginary quadratic sub-
field.

Proof. Assume that such Y does exist. Then it is absolutely simple. Replacing if
necessary, k by its finite overfield and Y by a k-isogenous abelian variety, we may
and will assume that Y can be lifted to an abelian variety A in characteristic zero
such that there is an embedding End0(Y ) →֒ End0(A) [22, Sect. 3, Th. 2]. It
follows that A is absolutely simple, which contradicts Theorem 5.1. The obtained
contradiction proves Corollary. �

6. Proof of Theorem 1.1

Assume that X is not neat, k is sufficiently large and 1 ≤ dim(X) ≤ 3. According
to [27, Th. 3.5 on p. 283], dim(X) = 3 and one of the following two conditions
holds.
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(a) X is simple, E = End0(X) is a number field that contains an imaginary
quadratic subfield B such that NormE/B(q−1Fr2X) is a root of unity.

(b) X is isogenous over k to a product Y ×Z of a simple abelian surface Y and

an elliptic curve Z; End0(Y ) is a quartic CM-field containing an imaginary
quadratic subfield.

It follows from Corollary 5.2 that such an Y does not exist. Indeed, Γ(X, k) =
Γ(Y, k)Γ(Z, k); in particular, Γ(Y, k) does not contain nontrivial roots of unity.
Therefore all endomorphisms of Y are defined over k. Hence Y is absolutely simple.
This contradicts to Corollary 5.2 and implies that the case (b) does not occur.

In the case (a), Corollary 4.6 implies that X is almost ordinary. Let us fix a field
embedding B ⊂ C and let

σ1, σ2, σ3 : E →֒ C

be the list of field embedding E → C that coincide with the identity map on B.
Clearly, {σ1, σ2, σ3} is a CM-type of E. Let us put

α1 = σ1(FrX) ∈ C, α2 = σ2(FrX) ∈ C, α3 = σ3(α3) ∈ C.

It follows from Example 2.4 that

RX = {α1, α2, α3; q/α1, q/α2, q/α3}.
This implies that

L = Q(RX) = Q(α1, α2, α3) = B(α1, α2, α3)

and the root of unity

NormE/B

(

q−1Fr2X
)

=
3
∏

i=1

σi
(

q−1Fr2X
)

= q−3
3
∏

i=1

α2
i ∈ Γ(X, k).

Since Γ(X, k) does not contain nontrivial roots of unity,

NormE/B(q−1Fr2X) = 1.

(By the way, this gives us the relation

q3 =

(

3
∏

i=1

αi

)2

.)

This ends the proof.

7. Examples

Throughout this section, p is a prime, B an imaginary quadratic field such that
p does not split in B, i.e., the tensor product

Bp := B ⊗Q Qp

is a field that is a quadratic extension of Qp. We fix an embedding of B into C and
view B as a certain subfield of C. For the sake of simplicity, let us assume that p
is unramified in B.

Let K be a totally real cubic field such that the tensor product

Kp := K ⊗Q Qp

is isomorphic to a direct sum Qp ⊕ Bp. Since Qp and Bp are non-isomorphic field
extensions of Qp, the cubic field extension K/Q is not Galois. Let OK be the ring
of integers in the number field K. The description of Kp means that the ideal pOK
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splits into a product B1B2 of two distinct maximal ideals B1 and B2 such that
the completion KB1 with respect to B1-topology is Qp while the completion KB2

with respect to B2-topology is isomorphic to Bp.

Let K̃ be the normal closure of K. Clearly, K̃/K is a quadratic extension and the

Galois group of K̃/Q is the full symmetric group S3. Let K2 be the subfield of A3-

invariants in K̃ where A3 is the corresponding alternating (sub)group. Then K2/Q
is a quadratic field extension that coincides with the maximal abelian subextension
of K̃/Q.

Clearly, K and B are linearly disjoint over Q. Let us consider its tensor product
(compositum)

E := B ⊗Q K;

it is a sextic CM-field, which is an imaginary quadratic extension of totally real
K = 1 ⊗K with the complex conjugation

x⊗ y 7→ x̄⊗ y ∀x ∈ B ⊂ C, y ∈ K.

Similarly, K̃ and B are linearly disjoint over Q and its tensor product (compositum)

L := B⊗QK̃ is a degree 12 Galois closure of E. (Actually, L is a quadratic extension
of E It follows from [18, Lemma 18.2.iii] that L is a CM-field.) In addition, the
natural group homomorphism

Gal(B/Q) × Gal(K̃/Q) → Gal(L/Q)

is an isomorphism. In particular, the quartic field extension (B ⊗Q K2)/Q is the
maximal abelian subextension of L/Q. In addition,

Gal((B ⊗Q K2)/Q) = Gal(B/Q) × Gal(K2/Q)

is a product of two cyclic groups of order 2. Since every root of unity in L must lie
in the (quartic) maximal abelian B⊗QK2, the number mL of roots of unity in L is
2, 4, 6 or 8. (It cannot be 10, since the order 4 Galois group of the fifth cyclotomic
field over Q is cyclic.)

Notice that every proper maximal subfield F of E is either B = B ⊗ 1 or
K = 1⊗K. Indeed, F is either quadratic or cubic extension of Q. If F is quadratic
and does not coincide with B then F and B are linearly disjoint over Q, their tensor
product B ⊗ F is a quartic field extension and the natural map

B ⊗ F → E, x, y 7→ xy

is a field embedding. This implies that sextic E contains a quartic subfield, which
is not the case, since 4 does not divide 6. Now assume that F is cubic. Since F is
a subfield of the CM-field E, it follows from [18, Lemma 18.2.iv] that F is either
totally real or a CM-field. Since 3 = [F : Q] is odd, F is not a CM-field. It follows
that F is totally real and therefore lies in K. This implies that F = K.

Let us fix an embedding of L into C that acts as the identity map on B. Notice
that there is a canonical isomorphism of semisimple Q-algebras

B ⊗Q B ∼= B ⊕B, u⊗ v 7→ (uv, ūv). (7);

The complex conjugation on the first factor B (on the left hand side) permutes the
summands B’s (on the right hand side). Tensoring this isomorphism by Qp (over
Q), we obtain the canonical isomorphism of semisimple Qp-algebras

Bp ⊗Qp
Bp

∼= Bp ⊕Bp (7bis)
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such that the nontrivial automorphism of Bp/Qp (that acts on the first factor Bp

on the left hand side) permutes the summands (on the right hand side). We have

Ep := E ⊗Q Qp = [B ⊗Q K] ⊗Q Qp = [B ⊗Q Qp] ⊗Qp
[K ⊗Q Qp] = Bp ⊗Qp

Kp =

Bp ⊗Qp
[Qp ⊕ Bp] = Bp ⊕ [Bp ⊗Qp

Bp].

By (7bis) the second summand in the right hand side is a direct sum of two copies
of Bp. In addition the complex conjugation on E = B ⊗Q K permutes these two
copies. On the other hand, the conjugation leaves invariant the first summand Bp,
acting on it as the only nontrivial automorphism of Bp/Qp (induced by the complex
conjugation on B). This implies that if OE is the ring of integers in E then the
ideal pOE splits into a product of three distinct maximal ideals P0P1P2 and these
ideals enjoy the following properties.

• P2 coincides the complex-conjugate P1 of P1.
• P0 coincides with its own complex-conjugate P0.
• Each completion EPi

of E in Pi-adic topology is isomorphic to Bp. In
particular,

[EPi
: Qp] = [Bp : Qp] = 2 ∀i = 0, 1, 2.

Let us consider the (nonzero) ideal P = P0P
2
1 in OE . Clearly, its complex-

conjugate P̄ coincides with P0P
2
2. We have

PP̄ = (P0P
2
1)(P0P

2
2) = (P0P1P2)2 = p2OE .

There exists a positive integer h such that Ph is a principal ideal, i.e., there exists
a nonzero β ∈ OE such that

Ph = β · OE .

It follows that its complex-conjugate Ph = β̄ · OE and

p2h · OE = (PP̄)2h = PhPh = ββ̄ · OE .

This implies that the ratio

u =
p2h

ββ̄

is a unit in OE . Clearly, ū = u, i.e., u ∈ O∗

K . Let us put

π := uβ2 ∈ OE .

We have

ππ̄ = p4h, π · OE = (Ph)2 = P2h = P2h
0 P4h

1 , π̄ · OE = P2h
0 P4h

2 .

I claim that Q[π] coincides with E. Indeed, if Q[π] does not coincides with E then
either π ∈ B or π ∈ K. Suppose that π ∈ B. Then p2h/π is a p-unit in B with
archimedean absolute value 1. It follows from Lemma 2.13 that p2h/π is a root of
unity. This implies that

P2h
0 P4h

1 = πOE = p2hOE = (P0P1P2)2h

and therefore P2h
1 = P2h

2 , which is not the case. This implies that π does not

belong to B. Suppose that π ∈ K. Then

P2h
0 P4h

1 = πOE = π̄ · OE = P2h
0 P4h

2

and therefore P4h
1 = P4h

2 , which is not the case. This implies that π does not

belong to K.
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The same arguments work if we replace h by nh and π by πn (for any positive
integer n). This implies that Q[πn] = E for all n.

Let us put

q := p4h.

Then π is a Weil q-number in a sense of Honda–Tate [22]. By Honda-Tate theory
[22] there exists a simple abelian variety X over Fq such that RX coincides with the
Galois orbit of π. We also have a canonical field isomorphism Q[FrX ] ∼= Q[π] = E
that sends FrX to π. Recall that E is a CM-field; in particular, it has no real places.
By a theorem of Tate, End0(X) is a finite-dimensional central division algebra over
E, whose local invariants are zero outside divisors of p while for each divisor Pi of
p the local invariant of End0(X) over EPi

is

cPi
:= [EPi

: Qp] · ordPi
(π)

ordPi
(q)

mod Z

where

ordPi
: E∗ → Z

is the discrete valuation map attached to Pi ([22, Sect. 1, Th. 1]; see also [14, Th.
5.4]). We have

cP1 = 2 · 4h

4h
mod Z = 2 mod Z = 0, cP2 = 2 · 0

4h
mod Z = 0,

cP0 = 2 · 2h

4h
mod Z = 1 mod Z = 0.

We obtain that all the local invariants of End0(X) are zero, i.e., End0(X) coincides
with its center E. In addition, dim(X) = [E : Q]/2 = 3. Since E = Q[π) = Q[πn]
for all positive integers n, all endomorphisms of X are defined over Fq [14, Prop.
5.11]. In particular, X is absolutely simple. Let us consider the 3-element set Φ of
all field embeddings

σi : E →֒ C, i = 1, 2, 3

that coincide with the identity map on B. As above, RX consists of six distinct
elements

{α1, α2, α3; q/α1, q/α2, q/α3}
where αi = σi(π) for all i.

Now let k/Fq be a degree mL field extension. Let Xk = X ×Fq
k be the abelian

threefold obtained by the base change. Clearly, k is sufficiently large with respect
to X . It is also clear that there is an isomorphism End0(Xk) ∼= E that sends FrXk

to πmL ; in addition, RXk
consists of six distinct elements

{γ1 = αmL

1 , γ2 = αmL

2 , γ3 = αmL

3 ; qmL/γ1, q
mL/γ2, q

mL/γ3}.
Theorem 7.1. The abelian variety Xk over k enjoys the properties i)–iii) of The-
orem 1.1.

Proof. By Theorem 2.15

1 = NormE/B(πn) =

3
∏

i=1

(

q−nγ2i
)

.

It follows that the abelian threefold Xk is not neat. Now the result follows from
Theorem 1.1. �
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Now let us construct explicitly B and K as above. For the sake of simplicity. let
us assume that p is odd. Fix a positive integer d such that −d mod p is not a square
in Fp. Let us put B = Q(

√
−d). Clearly, Bp is an unramified quadratic extension

of Qp. Such an extension of Qp is unique, up to an isomorphism. In other words,
the field extension Bp/Qp does not depend on a choice of d up to an isomorphism.

In order to construct K, choose a prime ℓ 6= p such that ℓ mod p is not a square
in Fp. Let us consider the cubic polynomial

f(x) = x(x2 − ℓ) +
pℓ

(pℓ+ 1)4
∈ Z(ℓ)[x]

⋂

Z(p)[x] ⊂ Q[x].

By Eisenstein’s criterion over Zℓ, f(x) is irreducible over Qℓ and therefore over Q.
Now we may define the cubic field

K := Q[x]/f(x)Q[x].

The reduction of f(x) modulo p coincides with the product x(x2 − ℓ) of the linear
polynomial x and the irreducible quadratic polynomial x2 − ℓ. By Hensel’s lemma,
f(x) splits over Qp into a product

f(x) = f1(x)f2(x)

of a linear polynomial polynomial f1(x) and a quadratic polynomial f2(x); in addi-
tion, f2(x) splits into a product of two linear factors over an unramified quadratic
extension of Qp. It follows that

Kp := K ⊗Q Qp = Qp[x]/f1(x)Qp[x] ⊕Qp[x]/f2(x)Qp[x] = Qp ⊕Qp[x]/f2(x)Qp[x]

where Qp[x]/f2(x)Qp[x] is an unramified quadratic extension of Qp. This implies
that Qp[x]/f2(x)Qp[x] ∼= Bp and therefore

Kp
∼= Qp ⊕Bp.

It remains to check that K is totally real, i.e., all complex roots of f(x) are real.
Let w be a complex root of f(x). Then f(w) = 0, i.e.,

w(w −
√
ℓ)(w +

√
ℓ) = − pℓ

(pℓ+ 1)4

and therefore

min{| w |, | (w −
√
ℓ |, | (w +

√
ℓ |} < 1

pℓ+ 1
≤ 1

3 · 2 + 1
=

1

7
.

This implies that w lies in one of three circles of radius 1/7 with real centers 0,
√
ℓ

and −
√
ℓ respectively. Since the distance between any two centers is ≥

√
ℓ > 2/7,

these circles do not meet each other. In particular, every root w lies exactly in one
of these circles. On the other hand, let w1, w2, w3 be the set of all roots of f(x). If

a is any of the centers 0,
√
ℓ,−

√
ℓ then a(a2 − ℓ) = 0 and therefore

pℓ

(pℓ+ 1)4
= f(a) =

3
∏

i=1

(a− wi).

This implies that

min{| a− wi |, 1 ≤ i ≤ 3} < 1

pℓ+ 1
≤ 1

7
.

It follows that each of these circles contains, at least, one root of f(x). We conclude
that each circle contains exactly one root of f(x). Since each of these circles is stable
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under the complex conjugation, all the roots of f(x) must be real. This proves that
K is totally real and we are done.

8. Abelian fourfolds

The following observation was inspired by results of Rutger Noot [10, Prop. 4.1
on p. 165 and p. 168] about the reduction type of abelian varieties of Mumford’s
type [8, Sect. 4].

Theorem 8.1. Let X be an abelian fourfold over k. Suppose that k is sufficiently
large with respect to X, rk(X) = 3 and X enjoys one of the following two properties.

• X is absolutely simple.
• X is isogenous over k to a product X(3) × X(1) of an (absolutely) simple

abelian threefold X(3) and an ordinary elliptic curve X(1).

Then at least one of the following two conditions holds.

(i) there exist an imaginary quadratic field B and an embedding B →֒ End0(X)
that sends 1 to 1.

(ii) X is not simple and X(3) is an almost ordinary abelian threefold that is not
neat and therefore satisfies the conditions of Theorem 1.1. In particular,
End0(X(3)) contains an imaginary quadratic subfield.

Proof. We have

rk(X) = dim(X) − 1.

If X is simple then it follows from Theorem 3.6 of [6] that the condition (i) holds.

Now we may assume that X = X(3) × X(1). Recall that End0(X(1)) is an
imaginary quadratic field and rk(X(1)) = 1. We have

rk(X(3)) ≤ rk(X) = 3 ≤ rk(X(3)) + rk(X(1)) = rk(X(3)) + 1.

This implies that rk(X(3)) = 2 or 3. If rk(X(3)) = 3 then all the roots of PX(3)(t) are

simple and therefore End0(X(3)) is a field (recall thatX(3) is simple). It follows from
Corollary 3.3 (applied to X = X(3) and Y = X(1)) that there is a field embedding
End0(X(1)) →֒ End0(X(3)) and one may take as B the field End0(X(1)), which
implies that the condition (i) holds. If rk(X) = 2 and PX(3)(t) has no multiple
roots (i.e., is irreducible) then X(3) is not neat. It follows from Theorem 1.1 that
the condition (ii) holds. The only remaining case is when PX(3)(t) has multiple
roots, i.e.,

PX(3)(t) = PX(3),min(t)d

where d > 1 is an integer. Since among the roots of PX(3),min there are no square
roots of q, deg(PX(3),min) is even. It follows that d = 3 and PX(3),min is a quadratic

polynomial. But then RX consists of two elements and Γ′(X(3), k) is a cyclic group,
i.e., its rank is 1, which is not the case. The obtained contradiction ends the
proof. �

9. Corrigendum to [27]

• Page 274, Remark 2.1 The displayed formula should read

rk(Γ) ≤ ⌊deg(Pmin)/2⌋ + 1.

The formula on last line should read ⌊deg(Pmin)/2⌋ + 1.
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• Page 280, Theorem 2.12. The beginning of second sentence
The equality

rk(Γ(X × Y )) = rk(X) + rk(Y ) − 1

holds true if and only if there exists an imaginary quadratic field B enjoying

the following properties:

should read as follows.
If

rk(X × Y ) = rk(X) + rk(Y ) − 1

then there exists an imaginary quadratic field B that enjoys the following

properties.

• Page 281, Remark 3.1, last line. The formula should read

rk(Γ) = ⌊deg(Pmin)/2⌋ + 1.

• Page 284, line 8. α− 1 should read α′−1
.

10. Corrigendum to [26]

• Pages 267, 269 (and throughout the text), ∠ and ∠
∗ should read L and L∗

respectively.
• Page 267, line -10: multiplicities should read multiplies.
• Page 271, Definition 3.4: ignore senseless tenibk.
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